

VG H26-0068 1

ADVANCED MIRROR SYSTEM DEMONSTRATOR (AMSD)

PROGRESS UPDATE AT GOODRICH ELECTRO-OPTICAL SYSTEMS

Enrique Garcia

Goodrich Electro-Optical Systems 100 Wooster Heights Road Danbury, CT 06810

Agenda

- Program Objectives and Requirements
- Goodrich Configuration Overview
- Progress Update and Status
 - Facesheet
 - Actuators and Controller
 - Reaction Structure
 - Assembly and Integration
- Test Plan and Program Schedule
- Summary and Conclusions

Agenda

- Program Objectives and Requirements
- Goodrich Configuration Overview
- Progress Update and Status
 - Facesheet
 - Actuators and Controller
 - Reaction Structure
 - Assembly and Integration
- Test Plan and Program Schedule
- Summary and Conclusions

AMSD Program Objectives

VG H26-0068 4

- Diverse government applications require the benefits of:
 - High-payoff large, light-weight mirrors
 - that advance the state of the art, and
 - are rapidly producible, and
 - are affordable

Specific objectives:

- Sub-scale demo of the mirror system technology
- Traceable growth path to deployable, segmented optical systems
- Provide design features that enable/improve the manufacture, integration, test, and performance of a broad range of operational systems

Summary of Requirements and Compliance (1 of 2)

VG H26-0068 5

REQUIREMENT

STATUS/COMMENT

Physical

- < 15 kg m⁻² \sim 16.7 kg m⁻² (actuators + CRS repair)

- Hexagonal shape Comply (V-notch to eliminate fracture)

- 1.2m to 1.5m point-to-point Comply (1.3 m point-to-point)

Mechanical

- Fundamental frequency traceable Comply to full-size flight mirror system

Ambient Environment

- **290K to 310K** Comply

- External mechanical Comply disturbances

Cryogenic Environment

- 30K to 55K Comply

- No mechanical disturbances Comply

Survival Environment

- **223K** to **353K** 223K to 324K (limited by adhesive)

•25K to 353K (cryogenic)

10g quasi static

30g vibroacoustic Comply

Summary of Requirements and Compliance (2 of 2)

VG H26-0068 6

REQUIREMENT

<u>STATUS/COMMENT</u>

Total Surface Error

50 nm (rms); 250 nm (P-V)
 Compliance expected

- Goal 25 nm (rms); 100 nm (P-V) Achievable with additional CCP cycles

Micro-roughness

- 40 Å (rms) Compliance expected

- Goal of 20Å (rms) Compliance expected (< 20Å typical for glass)

- Spatial periods 1 mm to 1 µm Comply

Prescription

- Off-axis parabola Comply

Vertex Radius of Curvature

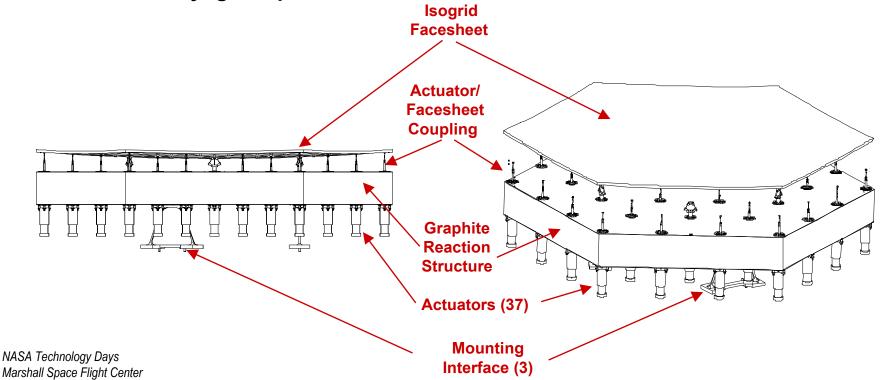
- 10.000m ± 1mm Comply

Coating

No coating required Comply (no coating)

Agenda

- Program Objectives and Requirements
- Goodrich Configuration Overview
- Progress Update and Status
 - Facesheet
 - Actuators and Controller
 - Reaction Structure
 - Assembly and Integration
- Test Plan and Program Schedule
- Summary and Conclusions


Design Concept

VG H26-0068 8

Architecture:

- Thin, light-weighted mirror facesheet
- **Array of figure-control actuators**
- Passive, stiff reaction structure
- Mirror facesheet CTE and $\Delta L/L$ matched to reaction structure for cryogenic performance

Marshall Space Flight Center May 22-23, 2002

Design Approach

VG H26-0068 9

- Figure-controlled (adaptive) mirror
 - Reduces fabrication/test cost and schedule
 - Maximizes operational system applicability
- Mirror facesheet CTE and \(\Delta L/L \) matched to reaction structure
 - Enables cryogenic performance
- Multiple material options (mirror/reaction structure pairings) from a single architecture
- Design optimization to mission constraints

- Environment

- Performance

- Cost

Schedule

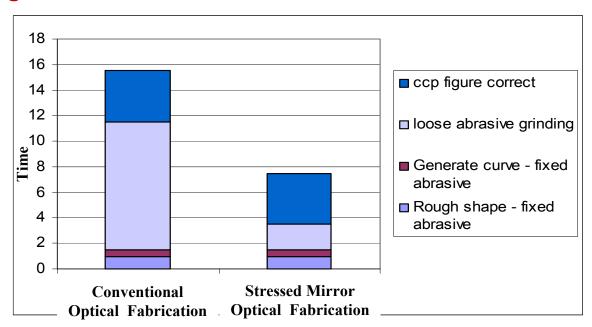
- Actuator design is common
- Mirror facesheet and reaction structure details are material dependent
- Traceability assessments are material dependent
 - Influenced by specific application
 - Material dependent processes and facilities

Design Approach Benefits

- Cost and schedule effective optical manufacturing
 - Non-recurring investment in tooling, followed by rapid fabrication of multiple matched facesheets
 - Work with large tools for majority of processing time
 - Actuators for low spatial frequency correction
 - Computer Controlled Polishing (CCP) for remainder
- Cost and schedule effective system-level operations
 - Actuators provide radius and figure adjustment at test and operating temperatures
 - Flexible substrate allows increased shape correction
 - Reduced reliance on ground testing

Approach for Optical Fabrication: Stressed Mirror Polishing Overview

- Basic fabrication process referred to as "Stressed Mirror Polishing" (SMP)
 - R2 (backside) of optic is fabricated to a sphere
 - Optic is held, by vacuum, against aspheric blocking body
 - Blocking body asphericity is negative of desired R1 asphericity
 - R1 is polished to a sphere
 - When vacuum is released, R1 will "spring" to desired asphere
 - Touch-up polishing after mounting to actuators
- SMP process has several advantages
 - Spherical fabrication process is fast, smooth, and simple
 - Minimal optic handling reduces risk most of the time the optic is mounted to granite blocking body
 - For multiple optics of same form, investment in blocking body paid off early



Fabrication of Fast Aspheres by SMP

VG H26-0068 12

- Taking advantage of thin section, bend the mirror to look like a sphere; grind and polish a sphere
- Large tools can remove material damage layer much faster
- Return to small-tool processing of unstressed asphere for final figure correction

Recurring and non-recurring efforts tailored based on quantity of units.

AMSD Approach Leverages Demonstrated Large Optical Systems Technology

VG H26-0068 13

HALO

- 3-meter diameter Primary Mirror Assembly
- 30 kg/m²
- tested at 100 Kelvin

LAMP

- 4-meter diameter Primary Mirror Assembly
- room temperature High Energy Laser System

ALOT

- 4-meter diameter lightweight telescope for space operation
- 70 kg/m² PMA
- room temperature imaging system

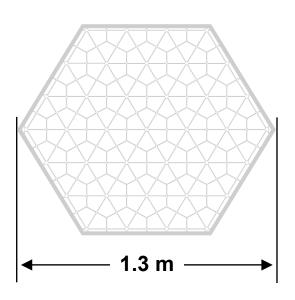
LOS

two four-meter diameter segments of 11-meter, f/1.25 primary mirror

Large, segmented mirrors and telescopes benefiting from shape-controlled technology are demonstrated.

Agenda

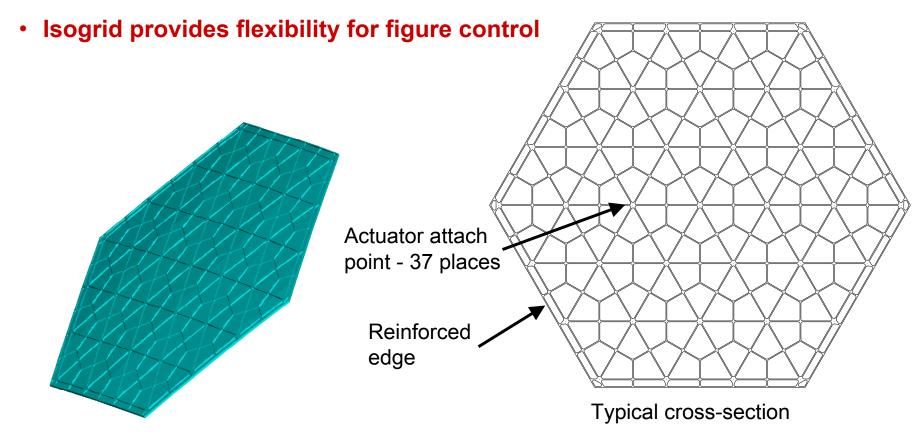
- Program Objectives and Requirements
- Goodrich Configuration Overview
- Progress Update and Status
 - Facesheet
 - Actuators and Controller
 - Reaction Structure
 - Assembly and Integration
- Test Plan and Program Schedule
- Summary and Conclusions


Progress Update and Status

VG H26-0068 15

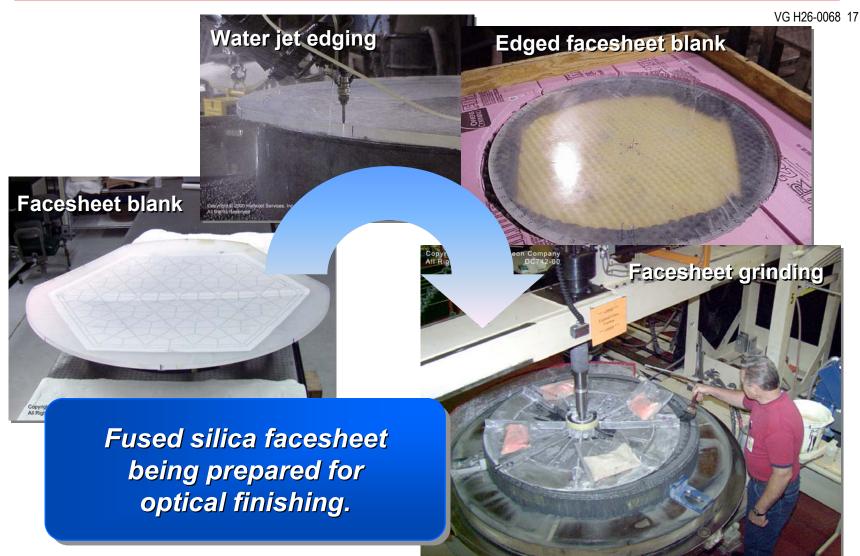
Light-Weighted Thin Facesheet:

- Facesheet design
- Optical fabrication (SMP)
- Light-weighting and edging
- Fracture and recovery
- Status

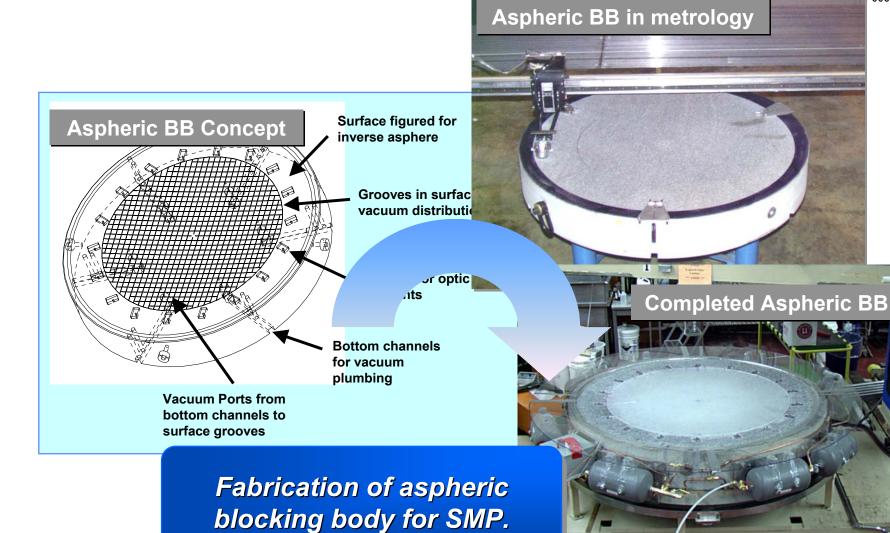


Facesheet Design

VG H26-0068 16


- Material is fused silica for CTE homogeneity (but could be ULE)
- Isogrid provides stiffness for 1-G support

Optical Fabrication: Preparing the Blank for Optical Finishing



Optical Fabrication: Preparing the Aspheric blocking Body

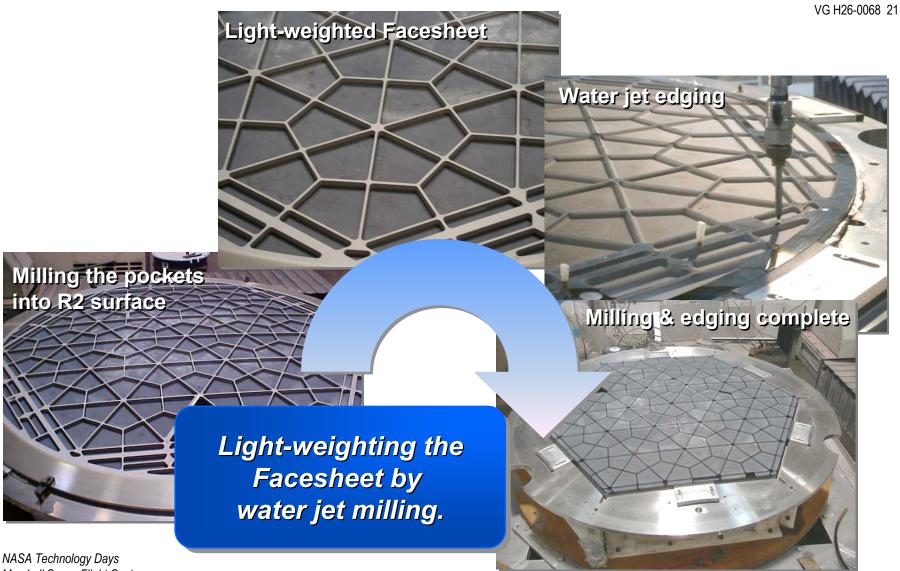
Marshall Space Flight Center

May 22-23, 2002

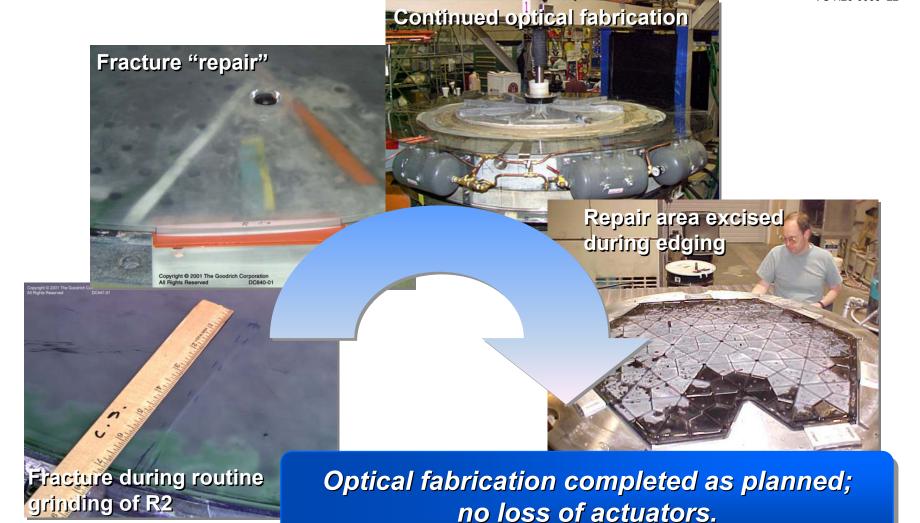
Optical Fabrication:Optical Finishing by SMP

VG H26-0068 19 Facesheet on Aspheric BB Stressed Mirror Polishing (SMP) Finishing the R2 Surface **Metrology** Optical fabrication by Stressed Mirror Polishing (SMP). NASA Technology Days

Optical Fabrication: Tooling for Water Jet Milling



Optical Fabrication:Light-Weighting and Edging



Optical Fabrication: Fracture and Recovery

VG H26-0068 22

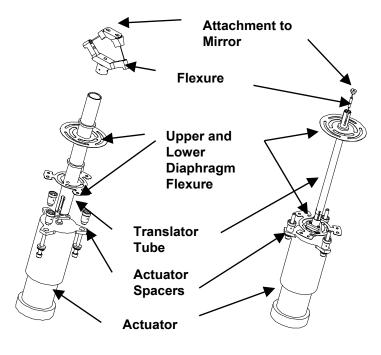
Facesheet Status

VG H26-0068 23

Facesheet Progress and Status:

- Fracture "repair" complete
- Optical fabrication by SMP complete
- Light-weighting by water jet milling complete
- Edging by water jet complete
- Beveling and stress relief in progress
- Preparations for Facesheet Subassembly underway

Optical fabrication complete;
Stressed Mirror Polishing advantages demonstrated.

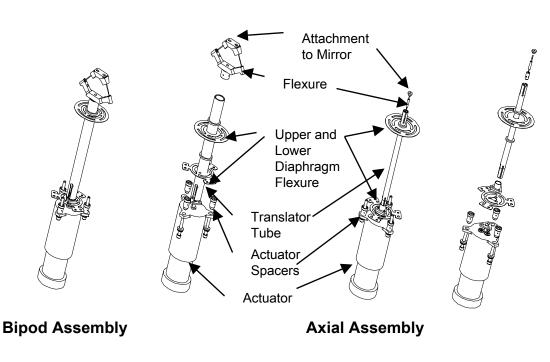

Progress Update and Status

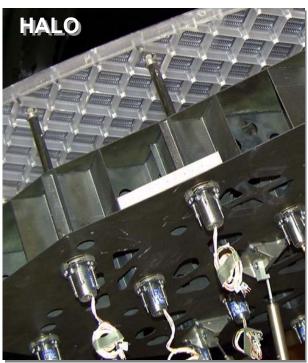
VG H26-0068 24

Actuators and Controller:

- Design overview
- Controller
- Test results
- Status

Bipod Assembly


Axial Assembly



Actuation System Design

- Actuator assemblies (6 "Bipod", 31 "Axial") react all loads
- Similar to HALO (also cryogenic)
- Upper and lower diaphragm flexures stabilize translator & flexure, provide shear and moment load path for bipods
- Allows easy access to actuators for installation and servicing

NASA Technology Days Marshall Space Flight Center May 22-23, 2002

Actuator Design Parameters Summary GOODR

Performance Parameter	Reason	
Stroke	Ground test and post- deployment capture range	
Resolution	Performance (quantization)	
Mass	Observatory flow-down	
Reliability and Lifetime	Maintain low performance risk	
Room and Cryogenic Performance	Operational performance and efficient ground-test strategy	
Low (zero) Power Dissipation	Thermal maintenance	
	Operational efficiency	
Axial Stiffness	PMA Dynamics	
Compatibility with Cryo-Appropriate Command/Power Structure	Minimize wire count for deployment Maintain reliability and redundancy	

- Goodrich has selected stepper-motor based actuator from **Moog-Shaeffer Magnetics Division (SMD):**
 - **Derived from NASA-funded cryo actuator studies**
 - **Engineered under Goodrich and Moog IRAD**

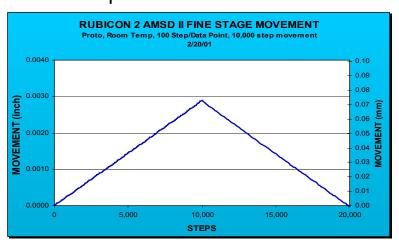
Actuator Design: Space Rated Materials for Cryogenic Operation

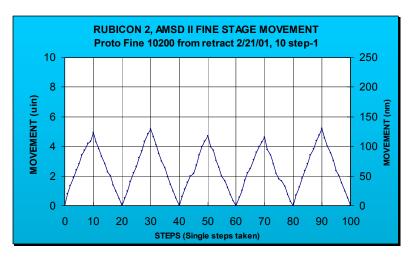
VG H26-0068 27

		VG П
	Titanium Alloy (6AL-4V)	General Construction: Housing/Transducer, Motor Housing, Thrust Rod, Spring/Nut Element, Output Flange
	Stainless Steel (440C)	Bearings, Harmonic Drive Wave Generator
CM 5 10	Stainless Steel (Nitronic40)	Output Leadscrew
INCH 2 3 4	Stainless Steel (15-5PH)	Harmonic Drive Circular Spline and Flex Spline
	Stainless Steel (416)	Motor Rotor

- Actuator internal bearings, harmonic drive wave generator, lead screw/nut use dry lubricant for low room temperature friction and excellent molecular bonding
- Materials are selected specifically for cryogenic application and compatibility
- Structural members are sized to perform over life with ample margin
- Fasteners are generally titanium with only a few 416 stainless steel (thermally matched)

Performance demonstrated at 30K, consistent with AMSD requirements.




Actuator Design Verified at RT and Cryo

VG H26-0068 28

Room temperature tests:

Example Data:

- Average Step Size = 7.3 nanometers
- Standard Deviation = 3.5 nanometers
- Meets requirement for max. step size < 20 nanometers

RT vs. Cryo Performance:

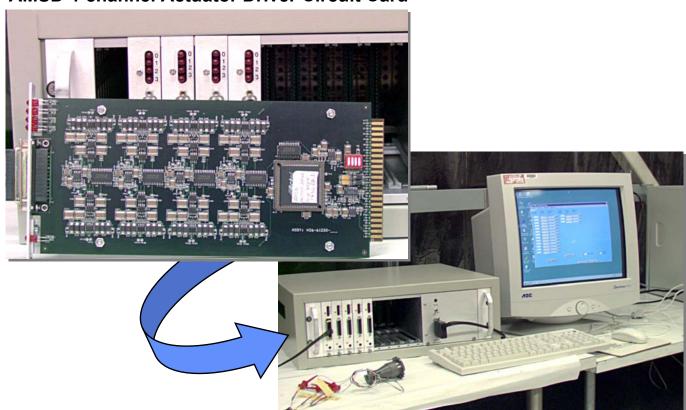
- Same general behavior when unloaded
- Some units have exhibited anomalous behavior under load at cryo
- More extensive cryo tests underway

Actuator Electronics: Design Requirements

- Architecture must be traceable to deployable, space-borne applications
- Minimize wire-count between nodes and central controller
 - Hold actuator position with minimal actuator power
 - Minimize overall power dissipation
- Architecture must be scaleable to large arrays of actuators
- Circuit design must be traceable to operation at 30K
 - Operate over temperature range from 30 to 293K
 - Active devices MOS (bipolar processes freeze-out at T < ~70K)
- AMSD Electronics design does not limit bandwidth (≈ 0.1 Hz update rate)

Actuator Electronics: Architecture

- Control Computer (CC) and array of actuator nodes form "ring"
 - Serial communication minimizes wire count
 - Resistive isolation between nodes prevents fault propagation
 - Easily provides required throughput
 - Ultimate bandwidth limit is motor dynamics
- All system "intelligence" in software executing on CC
 - Directly commands motor windings to desired states
 - Operationally flexible, upgradeable
- "Dumb" hardware at nodes
 - Translate winding state commands to winding drive currents
 - Minimizes hardware complexity, maximizes system flexibility
- Topology is inherently scaleable
 - Change CC software required
- AMSD drive electronics are "warm" (located outside vacuum chamber)



Actuator Electronics/Controller

VG H26-0068 31

AMSD 4-channel Actuator Driver Circuit Card

Drive electronics, controller, software and cabling are complete.

Actuators/Controller: Status

VG H26-0068 32

- Actuators/Controller Progress and Status:
 - All 37 AMSD units have been delivered
 - Drive electronics and controller complete
 - Performance tests at RT complete
 - More extensive cryo testing under load underway
 - Integration of actuation components with Reaction
 Structure underway

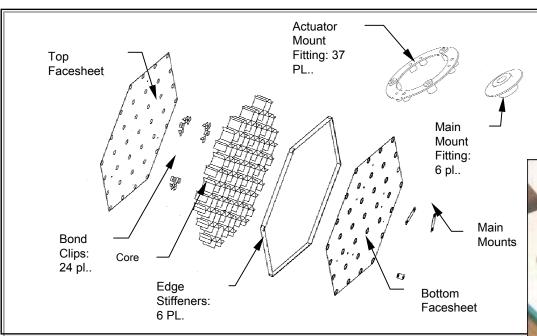
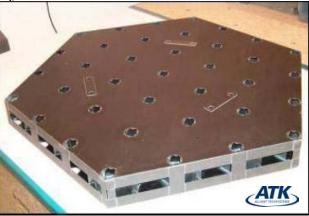
All actuators delivered; basic design/performance verified.

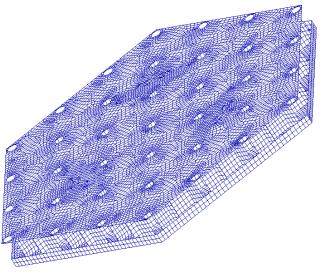
Progress Update and Status

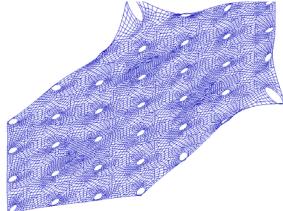
- Composite Reaction Structure:
 - Design and construction
 - Modeling
 - Delamination and repair
 - Cryo test results
 - Status

CRS: Design and Construction

- Graphite cyanate-ester for CTE match with glass Facesheet
- Mounts actuators and flexures; reacts loads from masses and figuring
- Interfaces to external mount
- Designed and manufactured by ATK

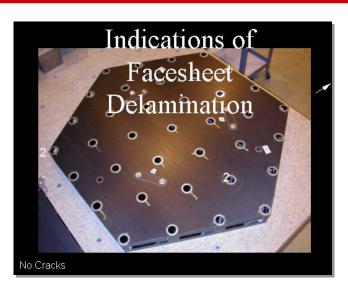




Photo of completed unit



CRS: Modeling and Analysis

- NASTRAN Detailed Finite Element Model
 - Layered shell elements
 - 37 concentrated mass elements representing actuators and INVAR fittings
 - Simple support at main mount locations
- Predicted response of baseline structure meets requirement (1st mode reduced to due to repair)

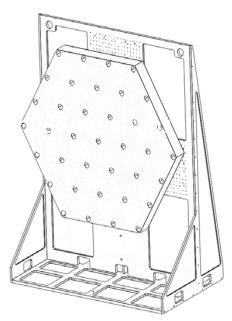


CRS: Delamination and Repair

VG H26-0068 36

- Post cryo cycling inspection revealed voids in facesheets:
 - Voids at specific orientation over core ribs
 - Attributed to alignment of facesheet plies relative to core cells
- Repaired by composite straps between top and bottom facesheets:
 - At every location of actual or likely delamination
 - Repair complete
 - CRS cryo cycled at the XRCF
- Origin of failure and solutions identified

v adding straps



CRS: Tests and Results

VG H26-0068 37

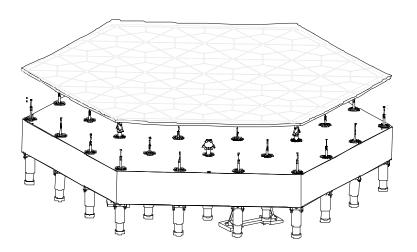
- Tests conducted on repaired CRS:
 - Thermal cycle to 25 K at XRCF
 - No metrology for distortion
 - No further delamination
 - 10-G static load test at ATK
 - Thermal characterization at XRCF
 - Instrumented for distortion measurements
 - Two cycles to 25 K
 - Measured distortion within acceptable limits

CRS on cryo test stand at XRCF

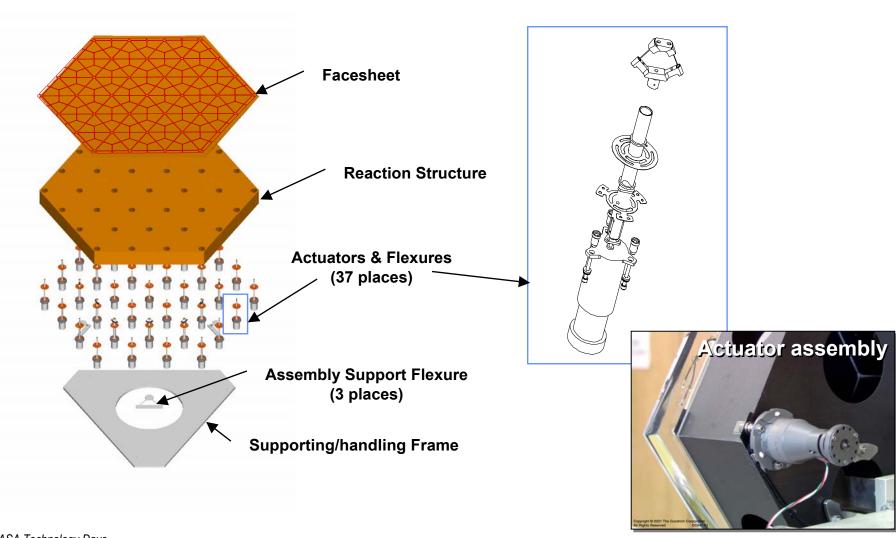
CRS: Status

VG H26-0068 38

- CRS Progress and Status:
 - Fabrication complete
 - Delamination:
 - · Causes and solutions identified
 - Repair complete
 - Cryo test of repaired unit complete
 - Integration with actuation system underway


CRS complete and verified by analysis and measurement.

Progress Update and Status


- Assembly and Integration:
 - Assembly description
 - Integration process
 - Status and Plans

Assembly Description

Hardware Integration Flow

VG H26-0068 41 **Facesheet Facesheet Subassembly Facesheet Flexures Facesheet** to Reaction Reaction **Structure** Structure Integration **Reaction Structure** Reaction Flexures & **Structure Translators** Subassembly **Actuators** COMPLETE **PLANNED**

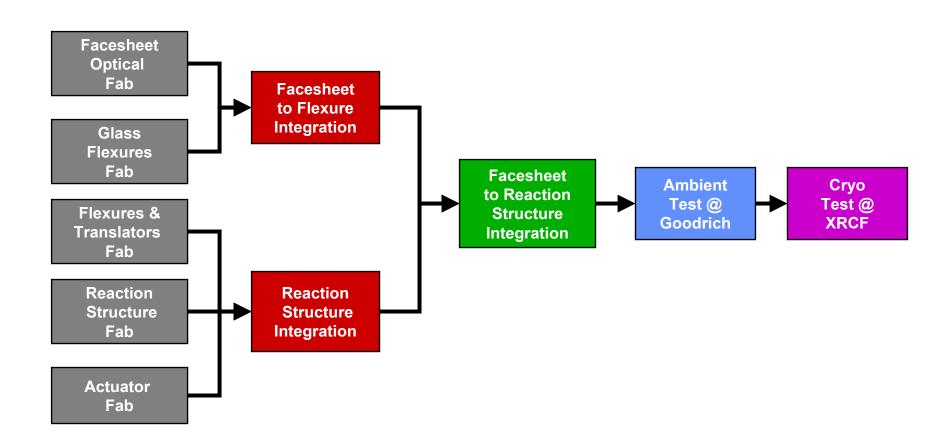
Assembly and Integration: Status

VG H26-0068 42

- Assembly and Integration Progress and Status:
 - Design and process definition complete
 - Tooling design and fabrication partly complete and continuing
 - Reaction Structure/Actuator subassembly in progress
 - Preparations for Facesheet Subassembly underway

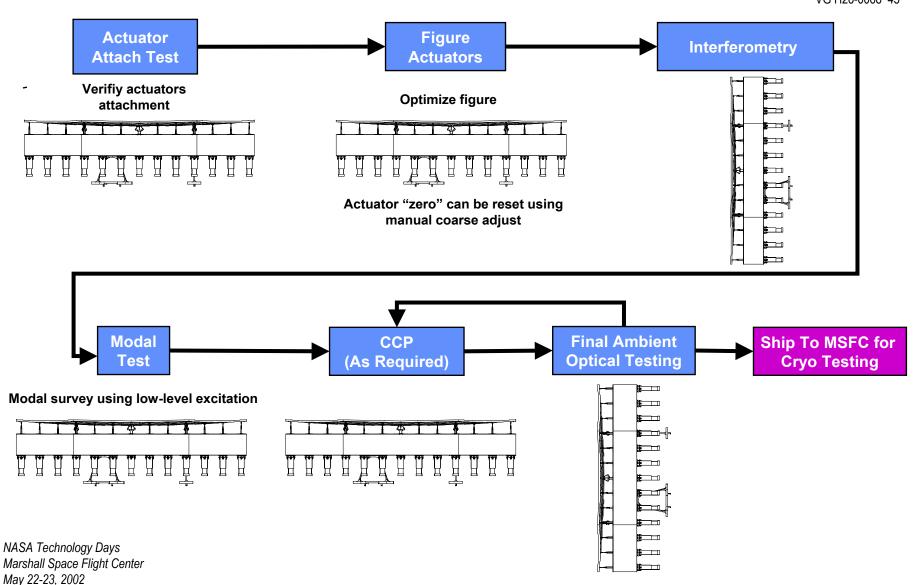
Assembly and Integration in progress per plan.

Agenda



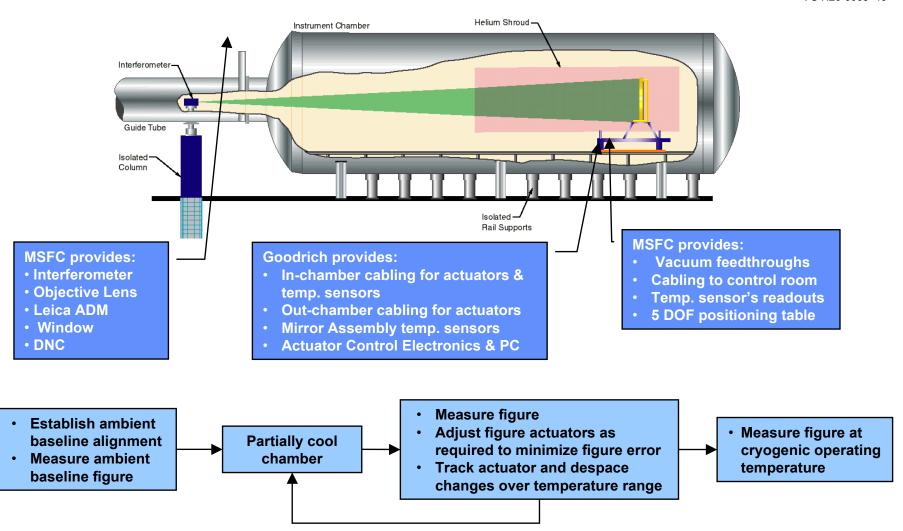
- Program Objectives and Requirements
- Goodrich Configuration Overview
- Progress Update and Status
 - Facesheet
 - Actuators and Controller
 - Reaction Structure
 - Assembly and Integration
- Test Plan and Program Schedule
- Summary and Conclusions

Process Flow Summary

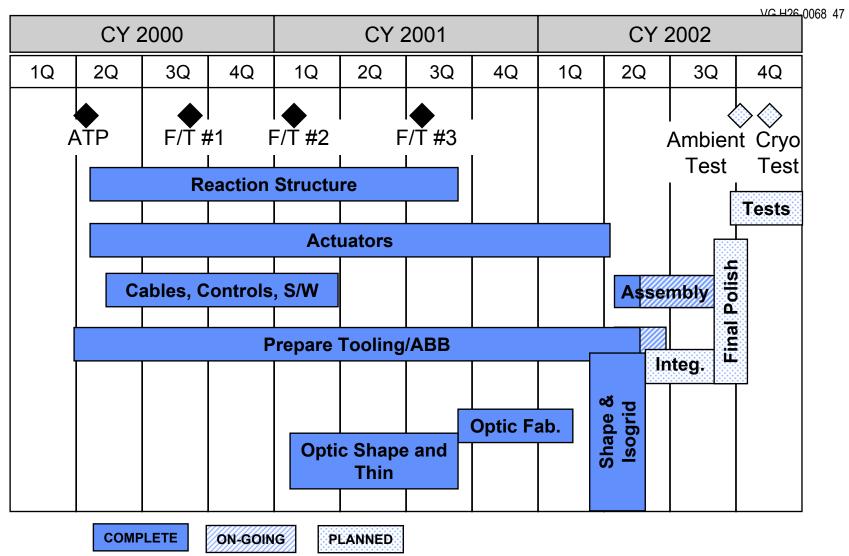


Test & Verification

(RT at Goodrich)



Cryo Test Arrangements at the XRCF



Top-Level AMSD Program Schedule

(as of 5/22/02)

Agenda

- Program Objectives and Requirements
- Goodrich Configuration Overview
- Progress Update and Status
 - Facesheet
 - Actuators and Controller
 - Reaction Structure
 - Assembly and Integration
- Test Plan and Program Schedule
- Summary and Conclusions

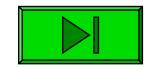
Design Traceability Overview

VG H26-0068 49

- Our AMSD design is traceable to operational systems:
 - Flexible facesheet enables efficient figuring of a readily produced substrate
 - 'Displacement' type actuators
 stiffen facesheet against reaction
 structure while providing shape
 control
 - Reaction structure utilizes a high stiffness-to-mass material that is amenable to efficient structural forms

- Material choices can be tailored to specific applications (facesheet and/or reaction structure)
- 'External' actuator permits adoption of improved designs
- Mass and stiffness changes are addressed without disruption to key facesheet/actuator design and manufacturing details

Our AMSD design is fully traceable against the SOW requirements.


Summary

VG H26-0068 50

- Goodrich's AMSD architecture provides robust accommodation for a broad range of system and mission requirements:
 - Readily accommodates alternative petal geometries
 - Readily accommodates alternative materials
 - Provides opportunity to trade mass, stiffness, and segment size for optimal mission responsiveness
 - Manufacturing technique is cost/schedule effective for multiple builds

Rapid optical fabrication and isogridding have validated the recurring benefits of the AMSD manufacturing processes.

